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1 Introduction to linear programming

Basic notation
The scalar product of vectors x, y ∈ Rn is xy :=

∑n
i=1 xiyi. We say that x is orthogonal to y if xy = 0.

A (closed) half-space defined by a ∈ Rn and α ∈ R is the set {x ∈ Rn : ax ≤ α}. Note that ∅, and
Rn are half-spaces according to our definition. A half-space is called homogeneous if α = 0. Sometimes
we consider vectors as row-vectors other times as column-vectors, it will be clear from the context when it
counts. The intersection of finitely many (at least one) half-spaces is called a (convex) polyhedron, formally
P (A, b) := {x ∈ Rn : Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm and the inequality meant coordinate-wise. A
linear programming problem is the following. There is a polyhedron P ⊆ Rn and a c ∈ Rn and we want to
maximize the scalar product cx where x ∈ P . Here c is called a linear objective function. It may happen
that P = ∅ or cx is unbounded on P . A polyhedral cone is the intersection of finitely many homogeneous
half-spaces: P (A) := {x ∈ Rn : Ax ≤ 0}.

Fourier-Motzkin elimination
The outer projection of a (x0, x1, . . . , xn) ∈ Rn+1 to the last n coordinates is (x1, . . . , xn) ∈ Rn. (The inner
projection to the last n coordinates is (0, x1, . . . , xn) ∈ Rn+1.) Projection for any subset of coordinate can be
defined similarly.

1.1 Theorem (Fourier-Motzkin elimination). The outer projection of a polyhedral cone to some of its coordi-
nates is an polyhedral cone.

Proof. Suppose the polyhedral cone lives in Rn+1. It is enough to show that the outer projection to all but one
coordinate is an polyhedral cone since then we can repeat the process. By symmetry it is enough to handle the
projection to the last n coordinates.

We need to prove that for every A ∈ Rm×(n+1) there is a A′ ∈ Rm′×n such that P (A′) = {x ∈ Rn|∃α ∈
R : (α, x) ∈ P (A)}. We write ai. for the i-th row of A and a.i for the i-th column. Multiplying a row of A
by a positive scalar does not change P (A), hence we may assume that a.1 does not have any other coordinates
than 0, 1,−1. If a row of A starts with 0, then put this row to A′ without the initial 0 coordinate. Whenever
(1, p) and (−1, q) are rows of A we put the row p+ q to A′. The definition of A′ is complete (the order of rows
obviously does not matter). From the construction is clear that if (α, x) ∈ P (A), then x ∈ P (A′).

Suppose that x ∈ P (A′). We need to find an α ∈ R such that (α, x) ∈ P (A). If a row of A starts with 0, than
the corresponding inequality will hold for (α, x) whatever α we choose. Rows of A of the form (1, p) demand
α ≤ −px, the rows (−1, q) require qx ≤ α. Assume that −px is the smallest upper bound and qx the largest
lower bound that we obtain this way. Then all the requirements for α are qx ≤ α ≤ −px. It is satisfiable if and
only if qx ≤ −px i.e. (p+ q)x ≤ 0. But it holds, since p+ q is a row of A′ and A′x ≤ 0 since x ∈ P (A′).

1.2 Observation. It is worth to mention that if F is some ordered subfield of R (for example Q) and in Theorem
1.1 the polyhedral cone is representable over F, then the projection is also representable over F. The analogue
of this observation remains true for basically all of the further theorems as well.

1.3 Corollary. The outer projection of a polyhedron to some of its coordinates is a polyhedron.

Proof. It is enough to show that if P := P (A, b) ⊆ Rn+1 is a polyhedron, then its projection P ′ := {x ∈
Rn | ∃α ∈ R : (α, x) ∈ P} as well. Let [Ab] be the matrix we obtain from A by adding b as a last column.
Applying Theorem 1.1 take a matrix [A′b′] such that P ([A′b′]) = {x ∈ Rn+1 | ∃α ∈ R : (α, x) ∈ P ([Ab])}. We
show P ′ = P (A′, b′). On the one hand,

(α, x) ∈ P ⇐⇒ (α, x,−1) ∈ P ([Ab]) =⇒ (x,−1) ∈ P ([A′b′])⇐⇒ x ∈ P ′.

On the other hand,
(x,−1) ∈ P ([A′b′]) =⇒ ∃α : (α, x,−1) ∈ P ([Ab]).

Polyhedral cones and generated cones
A generated cone consists of the non-negative combinations of finitely many (at least one) vectors: {

∑m
i=1 λivi :

λi ∈ R+} where v1, . . . , vm ∈ Rn are the generator vectors. The cone generated by the rows of the matrix Q is
denoted by G(Q) i.e., G(Q) = {yQ : y ≥ 0}.
1.4 Remark. If a ∈ Rn and α ∈ R, then ax = α can be expressed by two linear inequalities: ax ≤ α, −ax ≤ −α.
Thus we may allow equalities in the description of polyhedrons.

1.5 Claim. Every generated cone is an polyhedral cone.
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Proof. Clearly G(Q) := {z | ∃x ≥ 0 : xQ = z}. The system {(x, z) : xQ − z = 0, x ≥ 0} is a polyhedral cone.
On the one hand, by Theorem 1.1, its outer projection to the z-coordinates is a polyhedral cone as well. On
the other hand, it is exactly G(Q).

1.6 Lemma (Farkas lemma). 6 ∃x ≥ 0 : Ax = b if and only if ∃y : yA ≤ 0, yb > 0.

Proof. First we show that solutions x, y for the two systems cannot simultaneously exist. Suppose that x, y are
solutions. Then by multiplying the equation Ax = b from left by the row vector y we obtain (yA)x = yb. Here
the right side is positive by assumption but the left side is not since x ≥ 0 and yA ≤ 0 which is a contradiction.
Suppose that 6 ∃x ≥ 0 : Ax = b. It means that the cone G generated by the columns of A does not contain b.
By Claim 1.5 there is a matrix C such that G = {x : Cx ≤ 0}. Then for an appropriate row y of C we have
yb > 0 but for every column a of A we know ya ≤ 0.

1.7 Corollary (Fredholm alternative theorem). 6 ∃x : Ax = b if and only if ∃y : yA = 0, yb 6= 0.

1.8 Excercise (Farkas lemma general form). Show that exactly one of the following two systems are solvable.

x0 ≥ 0

Ax0 +Bx1 = b0

Cx0 +Dx1 ≤ b1

y1 ≥ 0

y0A+ y1C ≥ 0

y0B + y1D = 0

y0b0 + y1b1 < 0

1.9 Claim. If P (A) = G(B), then G(A) = P (B).

Proof. From the conditions it follows that if a is a row of A and b is a row of B, then ab ≤ 0 from which we
obtain G(A) ⊆ P (B). Suppose, to the contrary, that x ∈ P (B) \G(A), by Farkas-lemma 1.6 there is an y such
that ay ≤ 0 for every row a of A (thus y ∈ P (A)) but xy > 0. Since P (A) = G(B) by assumption, y is a
non-negative combination of the rows of B. Then x ∈ P (B) implies xy ≤ 0, which is a contradiction.

1.10 Corollary. Every polyhedral cone is a generated cone.

Proof. Let P (A) be given. By Claim 1.5 there is a matrix B such that G(A) = P (B). But then by Claim 1.9
P (A) = G(B).

Bounds for a linear program
In this subsection let P = {x : Qx ≤ b} be a fixed nonempty polyhedron.

1.11 Theorem. The following are equivalent:

1. {cx : x ∈ P} is bounded from above,

2. 6 ∃z Qz ≤ 0, cz > 0,

3. c ∈ G(Q).

Proof. 1 =⇒ 2: if we have a z for which Qz ≤ 0 and cz > 0, then for x ∈ P and λ ∈ R+ we have x + λz ∈ P
and

c(x+ λz) = cx+ λcz →∞ if λ→∞.

2 =⇒ 3 follows from Farkas lemma 1.6.
3 =⇒ 1: suppose that c ∈ G(Q), i.e., there is some y ≥ 0 for which yQ = c. Let x ∈ P be arbitrary. Then

cx = (yQ)x = y(Qx) ≤ yb.

1.12 Corollary (Weak duality). If {cx : x ∈ P} is bounded from above, then {yb : yQ = c, y ≥ 0} is nonempty
and any element of it is an upper bound of {cx : x ∈ P}.

The system min yb, yQ = c, y ≥ 0 is the dual of the system max cx, Qx ≤ b.
1.13 Observation. The following sets are the same, it is called the direction cone D(P ) of P .
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1. {z | ∀x ∈ P ∀λ ∈ R+ x+ λz ∈ P},

2. {z | ∃x ∈ P ∀λ ∈ R+ x+ λz ∈ P},

3. {z |Qz ≤ 0}.

1.14 Observation. The following sets are the same, it is called the translation space T (P ) of P .

1. {z | ∀x ∈ P ∀λ ∈ R x+ λz ∈ P},

2. {z | ∃x ∈ P ∀λ ∈ R x+ λz ∈ P},

3. {z |Qz = 0}.

Basic solutions
Consider the system Qx ≤ b and let z be a solution. A row qi. of Q is called z-active if qi.z = bi. Let the
matrix Q=

z consists of the z-active rows of Q and let Q<z be the rest.

1.15 Claim. If P = {x : Qx ≤ b} = {x : Q′x ≤ b′} and z ∈ P , then the row space of Q=
z and Q′=z are the

same. Furthermore, the row space of Q and Q′ are the same as well.

Proof. Suppose, to the contrary, that the rows of Q=
z do not span some row q of Q′=z . By Fredolm alternative

theorem 1.7, there is some y such that Q=
z y = 0 and qy 6= 0. , We may assume qy > 0 (by negating y if it is

necessary). But then for a small enough ε > 0 we have z+ εy ∈ {x : Qx ≤ b} and z+ εy /∈ {x : Q′x ≤ b′} which
is a contradiction.

Similarly if for a row q of Q′ is not spanned by the rows of Q, then there is an y such that Qy = 0 and
qy > 0. But then for a large enough λ > 0 we have z + λy /∈ {x : Q′x ≤ b′} but z + λy ∈ {x : Qx ≤ b}.

Let P = {x : Qx ≤ b} and z ∈ P . The rank rP (z) of z in P is r(Q) − r(Q=
z ). By Claim 1.15, the

rank depends just on the polyhedron and not on the inequality system that represents it. A z ∈ P is a basic
solution if rP (z) = 0.

1.16 Theorem. Let P be a nonempty polyhedron and let cx bounded from above on P . Then for all x ∈ P
there is a basic solution x∗ ∈ P for which cx∗ ≥ cx.

Proof. We use induction on rP (x). If rP (x) = 0, then x∗ := x is appropriate. Suppose we know the statement
if the rank of x is at most n and let rP (x) = n+ 1. Assume that P = P (Q, b). Since x is not a basic solution,
the rows of Q=

x does not span all the rows of Q. By Fredholm alternative theorem 1.7, we have a z such that
Q=
x z = 0 but qz 6= 0 for some row q of Q. By negating z if necessary we can assume that cz ≥ 0. If cz > 0,

then there is some row p of Q for which pz > 0 otherwise x+ λz ∈ P for λ ∈ R+ and c(x+ λz)→∞ if λ→∞.
If cz = 0 then we can assume by negating z that qz > 0. Anyway, cz ≥ 0 and pz > 0 for some row p of Q. Note
that all such a row p is linearly independent from the rows of Q=

x . Then for an appropriate λ > 0 we have:

1. w := x+ λz ∈ P ,

2. all the x-active rows are w-active,

3. there is a w-active row which is linearly independent from the rows of Q=
x .

Since rP (w) < rP (x), by the induction hypothesis we have a basic solution x∗ with cx∗ ≥ cw. But then
using cz ≥ 0 and λ > 0:

cx∗ ≥ cw = c(x+ λz) = cx+ λcz ≥ cx

1.17 Remark. The “appropriate” λ is

λ := min
i : qi.z>0

bi − qi.x
qi.z

.

1.18 Corollary. Every nonempty polyhedron has a basic solution.

A basic solution x∗ is a strong basic solution if the columns of Q corresponding to the non-zero coordinates
of x∗ are linearly independent i.e., T (P ) does not contain a nontrivial vector which has non-zero coordinates at
most where x∗ has non-zero coordinates.

1.19 Theorem. Let P be a nonempty polyhedron and let cx bounded from above on P . Then for all x ∈ P
there is a strong basic solution x∗ ∈ P for which cx∗ ≥ cx.
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Proof. Let x ∈ P := P (Q, b) be arbitrary. By Theorem 1.16, we may pick a basic solution x∗ such that cx∗ ≥ cx
and x∗ has a minimal number of non-zero coordinates among these. Suppose for a contradiction that x∗ is not
a strong basic solution and let z be a non-zero vector for which Qz = 0, and z has non-zero coordinates at most
where x∗. Clearly cz = 0, otherwise cx would not be bounded on P . But then for a suitable λ ∈ R the vector
w := x∗ + λz:

1. has more 0 coordinates than x∗,

2. is a basic solution since Q=
w = Q=

x∗ ,

3. cw = cx∗,

which contradicts the choice of x∗.

When Q′ is a submatrix of Q, then bQ′ stands for the outer projection of b to the coordinates corresponding
those rows of Q which are in Q′.

1.20 Remark. By choosing maximally many independent rows and maximally many independent columns, the
corresponding submatrix is quadratic and regular.

1.21 Claim. For every strong basic solution x∗, there is regular submatrix Q′ of Q of size r(Q) × r(Q) such
that one can get x∗ by taking the unique solution of Q′x = bQ′ and extend it by 0 coordinates at those columns
of Q which are not in Q′.

Proof. Since x∗ is a basic solution, the rows of Q=
x∗ form a generator system of the row space of Q thus we can

trim it to a base. The columns of Q corresponding to the non-zero coordinates x∗ are linearly independent thus
we can extend it to a base of the column space. Consider the submatrix Q′ defined by these rows and columns.

It is routine to check that Q′ satisfies the conditions.

From Theorem 1.19 and Claim 1.21 we conclude the following.

1.22 Corollary. A nonempty polyhedron has finitely many (but at least one) strong basic solutions.

An x0 ∈ P is called an optimal solution (with respect to P and c) if cx0 ≥ cx for every x ∈ P .

1.23 Theorem. Let P be a nonempty polyhedron and let cx bounded from above on P , then there is a strong
basic solution x∗ which is optimal.

Proof. By Theorem 1.19, for every solution there is a strong basic solution which is better. Claim 1.22 ensures
that there are just finitely many strong basic solution thus we simply pick the best among these.

Strong duality
1.24 Claim. Let P = P (Q, b) be nonempty and let c be an objective function. The following are equivalent.

1. cx∗ ≥ cx for x ∈ P ,

2. 6 ∃z for which Q=
x∗z ≤ 0 but cz > 0,

3. c ∈ G(Q=
x∗).

Proof. 1 =⇒ 2: if such a z exists, then for a small enough ε > 0 we have x∗ + εz ∈ P and it would be a better
solution than x∗.

2 =⇒ 3: it follows directly from Farkas lemma 1.6.
3 =⇒ 1: according to 3, we have a y∗ ≥ 0 such that y∗Q = c and y∗ has non-zero coordinates at most at

the rows Q=
x∗ . On the one hand, by Corollary 1.12 y∗b is an upper bound for {cx : x ∈ P}. On the other hand,

cx∗ = (y∗Q)x∗ = y∗(Qx∗) = y∗b,

where the last equation follows from the fact that y∗ can have non-zero coordinates at most at the x∗-active
rows.

1.25 Corollary (Strong duality theorem of linear programming). If P (Q, b) 6= ∅ and cx is bounded from above
on it, then max{cx : Qx ≤ b} = min{yb : yQ = c, y ≥ 0}.

1.26 Corollary (Optimality criteria). x∗ is an optimal primal solution (i.e., optimal with respect to P (Q, b)
and c) and y∗ is an optimal dual solution (i.e., y∗ ≥ 0, y∗Q = c and minimize y∗b among these) if and only
if they are solutions and y∗i > 0 =⇒ (qi.x

∗ = bi) holds for every i.
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1.27 Excercise (Strong duality theorem general form). Suppose that the linear program

max c0x0 + c1x1

x0 ≥ 0

Ax0 +Bx1 = b0

Cx0 +Dx1 ≤ b1

is bounded from above. Show that the optimum equals to

min y0b0 + y1b1

y1 ≥ 0

y0A+ y1C ≥ c0
y0B + y1D = c1.

The structure of polyhedrons
Let P be a nonempty polyhedron, cx bounded from above on P and δ = max{cx : x ∈ P} (exists by Theorem
1.23). The set F := {x ∈ P : cx = δ} is called a face of P . Note that P itself is a face ensured by c = 0.
Proper faces are the faces with F ( P .

1.28 Theorem. Let P = P (Q, b) be nonempty. Then a nonempty F ⊆ P is a face of P if and only if we can
partition the rows of Q into matrices Q′, Q′′ such that {x : Q′x ≤ bQ′ , Q′′x = bQ′′} = F .

Proof. Let F := {x : Q′x ≤ bQ′ , Q
′′x = bQ′′} 6= ∅ and let c be the sum of the rows of Q′′. Then being an

element of P which optimal for c means being in F .
Take a c for which cx is bounded on P . Pick an optimal dual solution y∗ (see Corollary 1.26). Let Q′′

consists of those qi. for which y∗i > 0 and let Q′ consist of the rest. Then by Corollary 1.26, an x∗ is optimal if
and only if the rows in Q′′ are x∗-active i.e., if x∗ ∈ {x : Q′x ≤ bQ′ , Q′′x = bQ′′}.

1.29 Corollary. A face of a face of a polyhedron P is a face of P .

A linear combination
∑m
i=1 λivi is affine combination if

∑m
i=1 λi = 1. A nonempty subset of Rn is an

affine subspace if it is closed under affine combination. An affine combination is a convex combination if it
is non-negative.

1.30 Observation. The affine subspaces are exactly the nonempty sets of the form {x : Ax = b}.

1.31 Claim. For a ⊆-minimal face F of the nonempty polyhedron P (Q, b), there is a Q′′ consisting of some
rows of Q such that F = {x : Q′′x = bQ′′}. Hence F is an affin subspace.

Proof. Take a representation F = {x : Q′x ≤ bQ′ , Q
′′x = bQ′′} as in Theorem 1.28 where Q′ has a minimal

number of rows. If the Q′ part is empty we are done. Otherwise consider a row q′i. of Q′ as an objective function.
Then q′i.x is bounded from above by bQ′(i). Let δi := max{q′i.x : x ∈ F}. The set {x ∈ F : q′i.x = δi} must
be the whole F since F cannot have a proper face. It implies that δ < bQ′(i) otherwise we can replace the
corresponding inequality by equation. We show that

{x : Q′x ≤ bQ′ , Q′′x = bQ′′} = {x : Q′′x = bQ′′}.

Assume for contradiction that Q′′z = bQ′′ but Q′z 6≤ bQ′ for some z. Then for x ∈ F , z − x is orthogonal to
the rows of Q′′ but q′j.(z − x) > 0 for some row of Q′. But then x + ε(z − x) ∈ F for small enough ε > 0 and
q′j. · [x+ ε(z − x)] is strictly increases if we increase ε contradicting the fact that it is constant δj .

A face consisting of a single point is called a vertex. An x ∈ P is extremal if it is not a convex combination
of other elements of P .

1.32 Theorem. The following are equivalent.

1. x∗ is a vertex,

2. x∗ is extremal,

3. x∗ is a basic solution and T (P ) = {0}.
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Proof. 1 =⇒ 2: suppose that x∗ is the only optimal solution with respect to c. Assume, to the contrary, that∑k
i=1 λixi = x∗, where xi ∈ P \ {x∗}, λi > 0 and

∑k
i=1 λi = 1. Then

cx∗ = c

(
k∑
i=1

λixi

)
=

k∑
i=1

λicxi <

k∑
i=1

λicx
∗ = cx∗.

2 =⇒ 3: let P = P (Q, b). We know that Q=
x∗x = 0 has no nontrivial solution, otherwise for such a solution

z for a small enough ε > 0 we would have x∗ − εz, x∗ + εz ∈ P , thus x∗ = 1
2 (x∗ − εz) + 1

2 (x∗ + εz). Hence
r(Q=

x∗) must be the number of columns and so is r(Q).
3 =⇒ 1: T (P ) = {0} implies that the columns of Q are linearly independent and so does the columns of

Q=
x∗ (the number of columns are their rank). Let c be the sum of the rows in Q=

x∗ . Then maximizing cx means
satisfying Q=

x∗x = bQ=
x∗

which cannot other solution than x∗ because of the independence of the columns.

1.33 Claim. A nonempy polyhedron P has a vertex if and only if T (P ) = {0}.

Proof. The necessity of T (P ) = {0} follows from 3. of Theorem 1.32. Suppose T (P ) = {0} and take a strong
basic solution (exists by 1.19). It is a vertex by 3. of Theorem 1.32.

1.34 Claim. A nonempy polyhedron P is the convex hull of its vertices if and only if D(P ) = {0}.

Proof. Assume that P is the convex hull of its vertices. By 3. of Theorem 1.32, the vertices are strong basic
solutions, thus there are just finitely many (see Corollary 1.22). Therefore P must be bounded which implies
D(P ) = {0}.

Suppose D(P ) = {0}. Then T (P ) = {0}, thus every basic solution is strong and hence is a vertex. Let
x ∈ P be arbitrary. By induction on r(x), we show that x is a convex combination of vertices. If r(x) = 0,
then x itself is a vertex. Let r(x) > 0 and assume P = P (Q, b). Let q be a row of Q which is not spanned by
the rows of Q=

x . By Fredholm alternative theorem 1.7 there is some z for which Q=
x z = 0 and zq > 0. Then

w := x+ λz ∈ P and r(w) < r(x) for a suitable λ > 0. We know that Q(−z) 6≤ 0 since D(P ) = {0} and z 6= 0.
Hence there is a row p of Q such that −pz > 0. Then v := x − µz ∈ P and r(v) < r(x) for a suitable µ > 0.
By the induction hypothesis, w, v are the convex combination of the vertices of P . But then x as well, since it
is on the segment[w, v].

2 TU matrices
A matrix is totally unimodular (shortly TU) if all of its subdeterminants are in {0, 1,−1}. Let I be the
identity matrix i.e., the matrix that has 1 in the diagonal and 0 elsewhere. We define ei to be the unit vector
which has one 1 at the i-th coordinate and the other coordinates are 0 (the size of I and ei will be clear from
the context).

2.1 Observation. TU matrices are invariant under the following operations:

1. transpose,

2. deletion of rows (columns),

3. changing the order of rows (columns),

4. multiplying a row or column by −1,

5. adding a new row (column) which is identical with some original,

6. adding a new row (column) of form ei (use Laplace expansion to show the result is TU)

7. adding a identity matrix bellow (next to) the matrix.

Examples
The incidence matrix of a digraph D = (V,A) is the following. The columns are corresponding to the edges
and the rows to the vertices. In the row corresponding to uv ∈ A we have a 1 at v and a −1 at u and the other
coordinates are 0. The incidence matrix of an undirected graph is similar except there is a 1 at coordinate u at
well.

2.2 Claim. The incidence matrix of a digraph is TU.

6

https://en.wikipedia.org/wiki/Laplace_expansion


Proof. We show that every subdeterminant is 1,−1 or 0 by induction on the size of the subdeterminant. The
1×1 case is clear. Suppose we know that the subdeterminants of size at most k are in {±1, 0}. Take a submatrix
Q of size (k+1)×(k+1). If there is a column with at most one non-zero element, then we use Laplace expansion
with this column and the induction hypothesis. Otherwise in every column we have a 1 and a −1 and the other
elements are 0, thus the sum of the rows is 0 which means the determinant is 0.

2.3 Corollary. The incidence matrix of a bipartite graph is TU.

Proof. Let G = (S, T,E) be a bipartite graph. Multiply the rows corresponding to S by −1. The result is the
incidence matrix of the digraph that we obtain by directing the edges of G from S to T . It is TU by Claim 2.2
and thus by Observation 2.1 the incidence matrix of G as well.

Let D = (V,A) be a digraph (loops and multiple edges are allowed) and suppose that T ⊆ A is a spanning
tree in the undirected sense. Let Q be a matrix which rows are indexed by the elements of T and the columns
by the edges in A \ T . Consider the column corresponding to an e ∈ A \ T . Then e creates a unique cycle in
T . If some f ∈ T is not in the cycle, then Qf,e := 0. If f is in the cycle, then we consider the orientation of
the cycle given by e. If the orientation of f agrees with this orientation, then Qf,e := 1 otherwise Qf,e := −1.
Matrices that are representable this way are called network matrices.

2.4 Theorem. Network matrices are TU.

Proof. First we check that a submatrix of a network matrix is a network matrix. Indeed, the deletion of a
column corresponding to e ∈ A \T means a deletion of e from D. The deletion of a row corresponding to f ∈ T
means the contraction of f in D.

Therefore it is enough to show that the determinant of a network matrix is in {±1, 0}. Suppose that it is
false, and take a smallest counterexample Q. Note that it remains a counterexample if we reverse some edges.
Let uv ∈ T where v is a leaf. If there is no edge in A \ T which is incident with v, then the determinant is 0
(constan 0 row) which is impossible. If there is exactly one such an edge then we use Laplace expansion and
get a contradiction since Q is a smallest counterexample and all submatrices of Q are network matrices.

Thus there must be distinct edges e, f ∈ A\T which are incident with v. By redirecting edges, we can assume
that e enters v and f leaves v. Adding the column of f to the column of e does not change the determinant.
On the other hand, the result is a network matrix defined by T and the digraph that we obtain by the deletion
of e and drawing a new edge e′ from the tail of e to the head of f . In the new counterexample defined by T
and D′ the number of edges incident with v is strictly less. Iterating this we get a counterexample in which at
most one edge is incident with v which we already know cannot exist.

Properties of TU matrices
We say that x is an integral vector if all of its coordinates are integers. An integral polyhedron is a
nonempty polyhedron such that every face ot it contains an integral vector. In other words, whenever cx is
bounded from above on it, then there is an integral optimal solution.

2.5 Theorem. If P (Q, b) 6= ∅, where Q is TU and b is integral, then it is an integral polyhedron.

Proof. Consider a face defined by the objective function c. There is an optimal solution x∗ which is a strong
basic solution (see Theorem 1.23). We have seen (Claim 1.21) that there is some quadratic, regular submatrix
Q′ of Q with r(Q′) = r(Q) such that one can get x∗ by extending the unique solution of Q′x = bQ′ with zeroes.
Since det(Q′) ∈ {1,−1} and bQ′ is an integral vector, it follows from the Cramer’s rule that the unique solution
of Q′x = bQ′ is an integral vector and therefore x∗ as well.

2.6 Lemma. Let Q be TU. If there is a x0 ∈ P (Q) with cx0 > 0, then there is a ±1, 0 valued x∗ ∈ P (Q) with
cx∗ > 0.

Proof. The system
max cx − 1 ≤ xi ≤ 1 (i = 1, . . . , n), Qx ≤ 0

defined by a TU matrix (see Observation 2.1) and the bounding vector is integer, thus there is an integral
optimal solution x∗ by Theorem 2.5. For a small enough ε > 0 the vector εx0 is a solution of the new system
and c(εx0) = ε(cx0) > 0, hence cx∗ > 0.

2.7 Corollary (Farkas lemma TU-version). If Qx ≤ b is unsolvable where Q is TU (b is arbitrary), then there
is a 1, 0 valued y for which yQ = 0 and yb < 0.

Proof. By applying the general form of Farkas lemma (i.e., exercise 1.8 with D := Q, b1 := b) we obtain a y1 ≥ 0
with y1Q = 0, y1b < 0. Then use the previous lemma where the matrix is the transpose of Q and −Q on top of
each other, x0 := y1 and c := −b.
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For α ∈ R andX ⊆ Rn letαX = {αx : x ∈ X}. Note that for an integer k > 0 we have kP (Q, b) = P (Q, kb).
The polyhedron P has the integer decomposition property if for every integer k > 0 and every integral
z ∈ kP , there are integral vectors z1, . . . , zk ∈ P such that z =

∑k
i=1 zi.

2.8 Theorem. If P = P (Q, b) 6= ∅, where Q is TU and b is integral, then P has the integer decomposition
property.

Proof. Suppose that z ∈ kP is integral. Remember that kP = P (Q, kb). We apply induction on k. For
k = 1, the choice z1 := z is appropriate. Suppose k > 1. If we can find an integral z1 for which Qz1 ≤ b
and Q(z − z1) ≤ (k − 1)b, then we are done since by induction we have a desired decomposition z2, . . . , zk of
z − z1 ∈ (k − 1)P . The conditions for z1 form a linear inequality system which matrix is still TU (Observation
2.1), the bounding vectors are integral and 1

kz is a solution. Therefore by Theorem 2.5, we have an integral
solution as well which is suitable for z1.

2.9 Corollary. Let Q be TU and b1, b2 ∈ Zn. If kb1 ≤ Qz ≤ kb2 where z ≥ 0 is integral, then there are
zi (i = 1, . . . , k) integral vectors such that z =

∑k
i=1 zi and zi ≥ 0, b1 ≤ Qzi ≤ b2.

The integer n is a rounding of α ∈ R if n ∈ {bαc , dαe}. The integral vector z is a rounding of x if zi is a
rounding of xi for every i. For a vector x, we define bxc and dxe coordinate-wise.

2.10 Theorem. Let Q be TU and y ∈ Rn. Then there is a rounding z of y for which Qz is a rounding of Qy.

Proof. The matrix of the system

byc ≤ x ≤ dye
bQyc ≤ Qx ≤ dQye

is TU and y is a solution, thus there is an integral solution z by Theorem 2.5.

2.11 Theorem. If Q is TU, then for every k ≥ 2, there is a k-colouring of the columns which is uniform in the
following sense: in every row the sums of the entries corresponding to the same colour-class differ by at most
one.

Proof. Let d := Q1 (i.e., the sum of the columns of Q) and consider the system

k

⌊
d

k

⌋
≤ Qx ≤ k

⌈
d

k

⌉
, x ≥ 0.

By the construction is clear that x = 1 is a solution, thus by Corollary 2.9 we have zi (i = 1, . . . , k) with

zi ≥ 0,

k∑
i=1

zi = 1,⌊
d

k

⌋
≤ Qzi ≤

⌈
d

k

⌉
.

It follows that zi are 1,0 valued and choosing zi to be the characteristic function of the i-th colour-class is
appropriate.

Applications of TU matrices
Applications in bipartite graphs

2.12 Theorem (Kőnig). In a bipartite graph G = (V,E) the maximal number of independent edges is equal to
the minimal number of vertices covering all the edges.

Proof. The incidence matrix Q of G is TU by Corollary 2.3. Let x ∈ RE be a variable and consider the linear
program

max
∑
e∈E

x(e) x ≥ 0, Qx ≤ 1.

The matrix of the system is TU (see Observation 2.1) thus by Theorem 2.5 there is an optimal solution x∗
which is integral. It means in this case that x∗ is 1, 0 valued. Clearly {e ∈ E : x∗(e) = 1} is a matching in G
(because Qx∗ ≤ 1) i.e., x∗ is a characteristic vector of a matching M . Note that

∑
e∈E x

∗(e) = |M |. The dual
problem is the following (use exercise1.27):
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min
∑
v∈V

y(v) y ≥ 0, yQ ≥ 1.

We can take an optimal solution y∗ which is integral for the same reason as in the case of x∗. Note that y∗
cannot have a coordinate which is larger than 1 since reducing it to one we would get a better solution of
the dual. Thus y∗ is 1,0 valued and it is the characteristic vector of a U ⊆ V that covers the edges (because
y∗Q ≥ 1) and by the Strong Duality Theorem 1.25, |U | =

∑
v∈V y

∗(v) =
∑
e∈E x

∗(e) = |M |.

2.13 Theorem (Egerváry). Let G = (V,E) be a bipartite graph and w ∈ RE. A weighted cover is a π ∈ RV
such that π ≥ 0 and π(u) + π(v) ≥ w(uv) for every uv ∈ E. Then the maximal possible total weight of a
matching (weight of a matching M is

∑
e∈M w(e)) equals to the minimal possible total weight of a weighted

cover (total weight of π is
∑
v∈V π(v)).

Proof. Consider the linear program

maxwx

x ≥ 0

Qx ≤ 1.

Take an optimal solution x∗ which is integral (it is possible by Theorem 2.5). It is a characteristic function of
a matching M with total weight wx∗. Because of Strong Duality 1.25, wx∗ is equal to

minπ1

π ≥ 0

πQ ≥ w.

Observe that the conditions say that π is a weighted cover and π1 is its total weight.

2.14 Theorem. Let G = (V,E) be a bipartite graph and let k be a positive integer. Then there is a partition
of F1, . . . , Fk of E such that |Fi| is a rounding of |E|k , and dFi(v) is a rounding of dE(v)

k for every v ∈ V .

Proof. Extend the incidence matrix of G by a constant 1 row. It is enough to show that the resulting matrix
Q is TU because then we are done by applying Theorem 2.11. We show that Q is a network matrix (which is
enough by Theorem 2.4). Let U,W be a bipartition of V such that every edge goes between U and W . Direct
the edges from U to W . Exactly These edges will be not in the spanning tree at the end of the construction.
Pick two new vertices u and w. From every v ∈W draw a directed edge to w and from u draw a directed edge
to every v ∈ U , finally add the edge wu. The construction is done. If ab ∈ E with a ∈ U and b ∈ W , then the
corresponding unique cycle is a, b, w, u thus in this column there is a 1 at the rows: ua, bw,wu.

2.15 Corollary. If G = (V,E) is a bipartite graph with maximal degree k, then one can partition E into k
many matchings where the size of each is a rounding of |E|k .

The number of edges spanned by a set Z ⊆ V is denoted by iG(Z). We omit G if it is clear from the
context.

2.16 Theorem. Let G = (V,E) be a bipartite graph. There are k many pairwise disjoint matchings of size l if
and only if for every Z ⊆ V we have i(Z) ≥ k(l − |V \ Z|).

Proof. If there are k many pairwise disjoint matchings of size l, then any of them has at most |V \ Z| edges
which are incident with V \ Z and therefore at least l − |V \ Z| which are not (i.e., spanned by Z) thus
i(Z) ≥ k(l − |V \ Z|) must hold.

Suppose that for every Z ⊆ V we have i(Z) ≥ k(l − |V \ Z|). Let Q be the incidence matrix of G. The
matrix of the system

max 1x

0 ≤ x ≤ 1

Qx ≤ k

is TU (see Observations 2.3 and 2.1). By Theorem 2.5, it is an integral polyhedron, thus we can take an
integral optimal solution x∗. If 1x∗ ≥ kl, then F := {e ∈ E : x∗(e) = 1} is a subgraph with maximal degree at
most k and with at least kl edges. Hence by Corollary 2.15, we can partition F into k many matchings where
all of them has size at least l.
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Suppose, to the contrary, that the the optimum is less than kl. Consider the dual.

min yk + z1,

(y, z) ≥ 0,

yQ+ z ≥ 1.

The dual polyhedron is also integral thus we can choose an integral optimal dual solution (y∗, z∗). Because
of the optimality it cannot have values larger than 1 thus it is 1,0 valued. Let Z∗ := {v ∈ V : y∗(v) = 0}. Note
that by optimality z∗(e) = 1 if and only if e is spanned by Z∗ (hence 1z = i(Z∗)). Applying Strong Duality
Theorem 1.25, the dual optimum is smaller than kl i.e.,

k |Z∗ \ V |+ i(Z∗) < kl.

It contradicts the assumption that i(Z) ≥ k(l − |V \ Z|) holds for Z ⊆ V

Applications in digraphs

For a digraph D = (V,A) and Z ⊆ V let us denote the set of the ingoing and outgoing edges by inA(Z) and
outA(Z) respectively. Let %A(Z) := |inA(Z)| and δA(Z) := |outA(Z)|. Finally if x ∈ RA, then %x(Z) and
δx(Z) are defined to be

∑
e∈inA(Z) x(e) and

∑
e∈outA(Z) x(e) respectively.

2.17 Lemma. If D = (V,A) is a digraph, x ∈ RA and Z ⊆ V , then
∑
v∈Z(%x(v)− δx(v)) = %x(Z)− δx(Z).

Proof. If uv ∈ A with u, v ∈ Z, then x(uv) appears with + sign at %x(v) and with − at δx(u). If u, v /∈ Z, then
x(uv) does not appear at the sum. If v ∈ Z but u /∈ Z, then it appears only once at %x(v) with +. If u ∈ Z but
v /∈ Z, then it appears only once at δx(u) with −.

An x ∈ RA is called a circulation if %x(v) = δx(v) for v ∈ V .

2.18 Lemma. ∀v ∈ V : %x(v) = δx(v) if and only if ∀v ∈ V : %x(v) ≤ δx(v).

Proof. Assume that ∀v ∈ V : %x(v) ≤ δx(v). Then (applying Lemma 2.17)

0 ≤
∑
v∈V

(δx(v)− %x(v)) = δx(V )− %x(V ) = 0− 0 = 0,

thus δx(v)− %x(v) = 0 for v ∈ V .

2.19 Theorem (Hoffman). Let D = (V,A) be a digraph and f, g ∈ RA with f ≤ g. There is a circulation x in
D with f ≤ x ≤ g if and only if %f (Z) ≤ δg(Z) holds for all Z ⊆ V . If f, g are integral and there is a feasible
circulation, then the set of the feasible circulations form an integral polyhedron.

Proof. If x is a circulation with f ≤ x ≤ g and Z ⊆ V , then

0 =
∑
v∈Z

(%x(v)− δx(v)) = %x(Z)− δx(Z) ≥ %f (Z)− δg(Z).

Let Q be the incidence matrix of D. By applying Apply Lemma 2.18, we conclude that the feasible cir-
culations are exactly the elements of the following polyhedron (which is integral by Theorem 2.5 unless it is
empty).

Qx ≤ 0

f ≤ x ≤ g

If the polyhedron above is empty, then by Corollary 2.7 the following system has a 1, 0 valued solution.

yQ+ z − s = 0 (1)
zg − sf < 0 (2)

Let (y∗, z∗, s∗) be such a solution. We may assume that there is no e ∈ A with z∗(e) = s∗(e) = 1 otherwise
by changing both z∗(e) and s∗(e) to 0 gives an other 1, 0 valued solution (where we use f ≤ g to prevent the
violation of (3)). Let Z := {v ∈ V : y∗(v) = 1}. From the previous assumption and (1) we may conclude
that z∗ is the characteristic vector of outA(Z) and s∗ is the characteristic vector of inA(Z). But then by (3) we
obtain %f (Z)− δg(Z) > 0.
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Let D = (V,A) be a digraph with s 6= t ∈ V . Suppose that s has no ingoing and t has no outgoing edges.
An s → t flow is an x : A→ R+ such that %x(v) = δx(v) for v ∈ V \ {s, t}. The amount of the flow is δx(s).
The flow x is called feasible with respect to a g : A→ R+ if x ≤ g. An s → t cut is a C ⊆ A that covers all
the s→ t paths in D. The value g(C) of such a C is defined to be

∑
e∈C g(e).

2.20 Theorem (Ford-Fulkerson). Let D = (V,A) be a digraph with s 6= t ∈ V . Suppose that s has no ingoing
and t has no outgoing edges and let g : A → R+. The maximal amount feasible s → t flows is equal to the
minimal value of s→ t cuts i.e.,

max{δx(s) : x is a feasible s→ t flow with respect to D, g} = min{g(C) : C is an s→ t cut in D}.

Furthermore, if g is integral, then x can be chosen integral.

Proof. Let us denote the minimal value of s → t cuts by λg(s, t). Extend D with the new edge ts to obtain
D′ = (V,A′). We define f to be 0 on A. Let f(ts) := g(ts) := λg(s, t). Observe that if x is a feasible circulation
with respect to D′, f, g, then the restriction of x to A is an s → t flow of amount λg(s, t). We show that the
desired feasible circulation exists by applying Theorem 2.19. Let Z ⊆ V be arbitrary. If ts does not enter Z,
then %f (Z) = 0 ≤ δg(Z) since g : A′ → R+. If ts enters Z, then

%f (Z) = f(ts) = λg(s, t) = min{δg(X) : X ⊆ V, s ∈ X, t /∈ X} ≤ δg(Z).

2.21 Corollary (Menger; edge-version, directed). The maximal number of edge-disjoint s → t paths in the
digraph D is equal to the minimal size of the s→ t cuts in D.

Proof. Take an integral s → t flow x of maximal amount which is feasible with respect to g ≡ 1. One can
partition the set {e ∈ A : x(e) = 1} by the greedy method into λD(s, t) many directed s→ t paths and directed
cycles.

If D = (V,A) is a digraph, then a cost function c ∈ RA is called conservative if there is no directed cycle
with negative total cost. Functions π : V → R are called potentials. The tension ∆π ∈ RA induced by π
maps a u→ v edge e to π(v)− π(u). A potential π is feasible with respect to c if ∆π ≤ c.
2.22 Excercise. In any digraph D = (V,A) the tensions form a linear subspace of RA and the circulations are
the orthogonal complement of this subspace. (Hint: let Q be the incidence matrix of D, then tensions are
generated by the rows and circulations is the kernel.)

2.23 Theorem (Gallai). Let D = (V,A) be a digraph and c ∈ RA. There is a feasible potential π if and only
if c is conservative. If c is conservative and integral, than π can be chosen integral.

Proof. Let Q be the incidence matrix of D. By Corollary 2.7, the system πQ ≤ c has no solution if and only if
∃x ∈ {0, 1}A with Qx = 0 and cx < 0. Let C := {e ∈ A : x(e) = 1}. Then Qx = 0 means %C(v) = δC(v) for
v ∈ V . By the greedy method one can partition C into directed cycles. At least one such a cycle has negative
total cost since cx < 0. The last sentence of the theorem follows from Theorem 2.5.

2.24 Theorem (Duffin). Let D = (V,A) be a digraph such that t ∈ V is reachable from s ∈ V . Let c ∈ RA be
conservative. Then

max{π(t)− π(s) : π is a feasible potential} = min{c(P ) : P is a directed s→ t path}.

Proof. Let Q be the incidence matrix of D. The maximum on the left can be expressed as

maxπ(t)− π(s)

πQ ≤ c.

By the Duality Theorem 1.25 it is equal to

min cx (1)
x ≥ 0 (2)

(Qx)(v) =


−1 if v = s

1 if v = t

0 otherwise.
(3)

By Theorem 2.5, we have an integral optimal solution x∗ of the dual. It defines a multi-subset of the edges
(because of (2)) which we can be partitioned by (3) into a directed s → t path P and some directed cycles.
These cycles must have 0 total cost since c is conservative and x∗ is optimal, thus cx∗ = c(P ).
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2.25 Theorem. Let D = (V,A) be a strongly connected digraph and f, g, c ∈ RA with f ≤ g. Suppose that there
exists a feasible circulation x. Let us define the following digraph Dx = (V,Ax) and cost function cx ∈ RAx .
If x(e) < g(e), then e ∈ Ax with cx(e) := c(e). If f(e) < x(e), then put the reverse ←−e of e in Ax with
cx(←−e ) := −c(e) (parallel edges may occur). The following are equivalent.

1. x minimize cx among the feasible circulations.

2. cx is conservative.

3. There exists a π ∈ RV (which can be chosen integral if c is integral) such that π(v)−π(u) ≤ c(e) whenever
e ∈ A is a u→ v edge with x(e) < g(e) and π(v)− π(u) ≥ c(e) if e ∈ A is a u→ v edge with x(e) > f(e).

Proof. 1 =⇒ 2: If cx is not conservative, then take a cycle C in Dx with cx(C) < 0 and take a ε > 0. For
e ∈ A ∩ C increase x(e) by ε. For ←−e ∈ C decrease x(e) by ε. The resulting x′ is a circulation and it is feasible
if ε is small enough. Furthermore, cx′ = cx+ εcx(C) < cx thus 1 is false.

2 =⇒ 3: By Theorem 2.23, there is a feasible potential π with respect to cx. From the construction of Dx

it follows that π satisfies the desired properties.
3 =⇒ 1: Let x′ be a feasible circulation with respect to D, f, g and let π be as in 3. Let cπ := c−∆π. By

Exercise 2.22, ∆πx
′ = 0 and therefore cz = cπz for every circulation z. Note that 3 says cπ(e) ≥ 0 if x(e) < g(e)

and cπ(e) ≤ 0 if x(e) > f(e) for every e ∈ A.

cx′ = cπx
′ =

∑
cπ(e)>0

cπ(e)x′(e) +
∑

cπ(e)<0

cπ(e)x′(e) ≥

∑
cπ(e)>0

cπ(e)f(uv) +
∑

cπ(e)<0

cπ(e)g(e) =

∑
cπ(e)>0

cπ(e)x(e) +
∑

cπ(e)<0

cπ(e)x(e) = cπx = cx

Let D = (V,A) be a strongly connected digraph. We are looking for a shortest possible tour which goes
through all the edges at least once and arrives at the starting vertex.

2.26 Theorem (Chinese Postman). Let D = (V,A) be a strongly connected digraph. The minimum of |F |,
where F consists of edges each of them parallel to an edge in A and D = (V,A∪ F ) has an Euler tour, is equal
to

max{
k∑
i=1

δA(Vi)− %A(Vi) : k > 0, V ⊇ V1 ⊇ . . . ,⊇ Vk, no edge in A enters more than one Vi}.

Proof. Observe that the maximum does not change if we demand δA(Vi)− %A(Vi) ≥ 0 for every i. To show the
min ≥ max direction, observe that for a desired F we have %A∪F (Z) = δA∪F (Z) for every Z ⊆ V . Thus every
Vi needs to get at least δA(Vi)− %A(Vi) new ingoing edges. Since no edges enters more than one Vi, these edge
sets are pairwise disjoints.

To show max=min, let f and c be the constant 1 function on A and let g be constant |A|2 + 1 on A (any
large enough number is good). Note that any integral feasible circulation gives a desired A ∪ F . If we pick a
directed cycle Ce through e for e ∈ A, then the sum z of the characteristic vectors of these cycles is a feasible
circulation with cz ≤ |A|2. By Theorem 2.19, there is an integral feasible circulation x∗ that minimize cx. We
know that x∗(e) < |A|2 + 1 = g(e) holds for e ∈ A otherwise z would be a better solution. By Theorem 2, there
is a π ∈ RV such that π(v)− π(u) ≤ 1 for any u→ v edge e ∈ A and π(v)− π(u) ≥ 1 if e is an u→ v edge with
x(e) > f(e). By adding a constant to π, we can assume that the smallest value of π is 0. Let us denote the
largest value of π by k and let Vi := {v ∈ V : π(v) ≥ i} for i = 1, . . . , k. We have π(v) ≤ π(u) + 1 whenever
there is an edge from u to v in A, i.e., each edge enters at most one Vi. Furthermore, if a u → v edge e has
been multiplied, then π(v) = π(u) + 1, i.e., e enters some Vi. This means that the number of new edges given
by x∗ is exactly

∑k
i=1 δD(Vi)− %D(Vi).
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A further application

2.27 Theorem. For any sequence (an) in R there is a sequence (bn) in Z such that for every k ≤ m the sum∑m
i=k bi is a rounding of

∑m
i=k ai.

Proof. It is enough to prove the statement for a finite sequence a1, . . . , aN since the infinite version follows by
König’s lemma. Consider the digraph D on v1, . . . , vN where vivj is an edge if either j = i+ 1 or j < i. Let T
consists of the edges vivi+1 and let Q be the network matrix defined by D and T . Let a := (a1, . . . , aN ), then
the theorem says that there is a rounding b of a for which bQ is a rounding of aQ. Since Q is TU by Theorem
2.4, it follows from Theorem 2.10.

3 Total dual integrality
3.1 Theorem. Let A ∈ Zm×n and b ∈ Zm. There is no x ∈ Zn for which Ax = b if and only if there is a
y ∈ Rm for which yA is integral but yb /∈ Z.

Proof. Suppose that there is a y ∈ Rm for which yA is integral and yb /∈ Z. Assume for a contradiction that
Ax = b for some x ∈ Zn. Multiply both sides of ‘Ax = b’ by y. Then the left side is an integer since yA and x
are both integral but the right side is not which is a contradiction.

Assume now that there is no y ∈ Rm for which yA is integral and yb /∈ Z. Consider first the case when A
is quadratic and regular. We need to show that x := A−1b is integral. Suppose that xi /∈ Z. Let y be the i-th
row of A−1. Then yA is integral but yb is not which contradicts our assumption. There is an x ∈ Rn for which
Ax = b, otherwise by applying Fredholm alternative theorem 1.7, we know that the system yA = 0, yb = 1

2 is
solvable. We can assume that the rows of A are linearly independent (and hence m ≤ n), otherwise we keep
just a base of the row space knowing that any solution of the corresponding subsystem is a solution of the whole
system and there is still no y for the smaller system (otherwise by extending it with 0 coordinates there would
be for the original as well).

Consider the following column operations: changing the order of the columns, negating columns, adding
n-times (n ∈ Z) a column to another column. Note that if we obtain A′ from A by using these operations, then
there is no y ∈ Rm for which yA′ is integral and yb /∈ Z since the same y would be good for A as well. On
the other hand, if A′x = b has an integral solution, then we can get an integral solution of Ax = b. Note that
r(A) = r(A′) thus the rows of A′ are also independent.

We can transform A to a form (applying the column operations) such that in the first row exactly the first
entry is non-zero. Observe that in the second row we must have a non-zero entry in the last n − 1 columns
otherwise the first two rows would be linearly dependent. By using the column operations with the last n − 1
columns, we can reach a matrix A′ such that A′2,2 6= 0 and A′2,i = 0 for i > 2. Following this method, we obtain
an A′′ with A′′i,i 6= 0 and A′′i,j = 0 for j > i. It means that the submatrix B consisting of the first m columns
of A′′ form a lower triangular matrix with non-zero elements in the diagonal and therefore regular. There is no
y ∈ Rm for which yB is integral and yb /∈ Z because the same y would be good for A′′ as well. We know from
the regular case that there is an x ∈ Zm for which Bx = b. By extending this x with arbitrary integers to an
x∗ ∈ Zn, we have A′′x∗ = b. By the properties of the column operations, it means that there is some z ∈ Zn
with Az = b.

3.2 Theorem (Edmonds and Giles). Let A ∈ Zm×n and b ∈ Zm where P := P (A, b) 6= ∅. Then P is an
integral polyhedron if and only if for every c ∈ Zn : sup{cx : x ∈ P} ∈ Z ∪ {+∞}.
Proof. If P is integral and cx is bounded from above, then there is an integral optimal solution x∗ (the face
defined by c has an integral point). Thus if c is integral, then cx∗ ∈ Z.

Assume that the ⊆-minimal face F of P does not contain integral points. Applying Claim 1.31, F = {x ∈
Rn : A′x = bA′} where A′ consists of some of the rows of A. By Theorem 3.1, there is a y such that yA′ =: c is
integral but ybA′ /∈ Z. We can assume that y ≥ 0 since y + n1 also has the desired properties for every n ∈ N.
Then an x∗ is an optimal solution with respect to c and P iff x∗ ∈ F , furthermore, the value cx∗ of the optimum
is cx∗ = (yA′)x∗ = y(A′x∗) = ybA′ /∈ Z which contradicts the assumption.

The linear inequality system Ax ≤ b (A ∈ Rm×n, b ∈ Rm) is totally dual integral shortly TDI if it is
solvable and for every c ∈ Zn for which {cx : Ax ≤ b} is bounded from above the dual min{yb : yA = c, y ≥ 0}
has an integral optimal solution y∗.

3.3 Theorem. If the system Ax ≤ b is TDI and A ∈ Zm×n, b ∈ Zm, then P (A, b) is an integral polyhedron.

Proof. Assume that c ∈ Zn and cx is bounded on P (A, b). By the Strong Duality theorem 1.25,

max{cx : Qx ≤ b} = min{yb : yQ = c, y ≥ 0}.

By the TDI property, there is an optimal integral dual solution y∗. Since b ∈ Zm, it implies that the value y∗b
of the optimum is an integer. Then Theorem 3.2 ensures that P (A, b) is an integral polyhedron.
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A functionm : 2V → R ismodular ifm(X)+m(Y ) = m(X∪Y )+m(X∩Y ) holds for every X,Y ⊆ V . Note
that if m is modular and m(∅) = 0, then m(X) =

∑
v∈X m(v) for every X ⊆ V . A function b : 2V → R∪{+∞}

is called submodular if for every X,Y ⊆ V we have b(X) + b(Y ) ≥ b(X ∪ Y ) + b(X ∩ Y ). If we demand
this inequality only for X,Y with X ∩ Y 6= ∅, then b is intersecting submodular. Finally b is crossing
submodular if the inequality holds for crossing X and Y (X,Y ⊆ V are crossing if X \Y, Y \X, X ∩Y, V \
(X ∪Y ) are all nonempty). A function p : 2V → R∪{−∞} is supermodular if −p is submodular. Intersecting
and crossing supermodular functions are defined analogously.

Submodular flows
Let D = (V,A) be a digraph, f ≤ g ∈ ZA and let b : 2V → Z ∪ {+∞} be crossing submodular. For an
x ∈ RA and Z ⊆ V , let λx(Z) := %x(Z) − δx(Z) . Note that the function λx : 2V → R is modular and
λx(∅) = λx(V ) = 0. We call an x ∈ RA a submodular flow (shortly: subflow) if λx(Z) ≤ b(Z) for every
Z ⊆ V . A subflow is feasible if f ≤ x ≤ g. For the further investigation of sublows we need some tools.

For a directed tree T = (U,F ) and uv ∈ F let us denote by Ue the vertex set of the component of T − uv
that contains v. A tree representation of the set family F ⊆ 2V consists of a directed tree T = (U,F ) and a
function ϕ : V → U for which the inverse images of the sets Uuv with respect to ϕ are exactly the elements of
F i.e., F = {ϕ−1(Uuv) : uv ∈ F}. A family F ⊆ 2V is called laminar if for any X,Y ∈ F at least one of the
following relations holds: X ⊆ Y, X ⊇ Y, X ∩ Y = ∅. The set family is cross-free (with respect to the ground
set V ) if it does not contain crossing sets.

3.4 Excercise. Every laminar F ⊆ 2V has a tree representation in which the directed tree is an arborescence.

3.5 Lemma. Every cross-free F ⊆ 2V has a tree representation.

Proof. We can assume that V 6= ∅. Pick an x ∈ V and replace every Z ∈ F that contains x with V \ Z.
The resulting system F ′ is laminar thus by the previous exercise it has a tree representation. By reversing the
tree-edges corresponding the elements of F ′ \ F we obtain a tree representation of F .

3.6 Corollary. Let D = (V,A) be a digraph and let F ⊆ 2V be cross-free. Consider the matrix Q ∈ {0,±1}F×A
where QZ,e = 1 if e ∈ inD(Z), QZ,e = −1 if e ∈ outD(Z) and QZ,e = 0 otherwise. The matrix Q is TU.

Proof. By Lemma 3.5, take a tree representation T = (U,F ), ϕ of F . For each uv ∈ A, add the directed edge
ϕ(v)ϕ(u) to T . Consider the network matrix of the resulting system where the tree is F . On the one hand this
matrix is exactly Q. On the other hand it is TU by Theorem 2.4.

3.7 Theorem. Let D = (V,A) be a digraph and let b : 2V → Z ∪ {+∞} be crossing submodular. Suppose
that f, g : A → Z with f ≤ g. Let F consists of those Z ∈ 2V for which b(Z) < +∞. Consider the matrix
Q ∈ {0,±1}F×A where QZ,e = 1 if e ∈ inD(Z), QZ,e = −1 if e ∈ outD(Z) and QZ,e = 0 otherwise.Then the
following system is TDI if it is solvable.

Qx ≤ b
f ≤ x ≤ g.

Proof. We need to find an integral optimal solution of the dual system for a given c ∈ ZA. For every Z ∈ F ,
we have a dual variable y(Z) and for each edge e ∈ A we have two dual variables yf (e) and yg(e). The dual is
(writing it in the long form) the following.

min
∑
Z∈F

y(Z)b(Z) +
∑
e∈A

yg(e)g(e)−
∑
e∈A

yf (e)f(e) (4)

∀e ∈ A :
∑

e∈inD(Z)

y(Z)−
∑

e∈outD(Z)

y(Z) + yg(e)− yf (e) = c(e) (5)

∀Z ∈ F : y(Z) ≥ 0, ∀e ∈ A : yg(e), yf (e) ≥ 0 (6)

The strong basic solutions of the dual are rational-valued (see Claim 1.21), thus we have a rational-valued
optimal solution (y′, y′g, y

′
f ) by Theorem 1.23. Let Q′ be the submatrix of Q consisting of those rows of Q where

y′ is positive and let b′ be the corresponding restriction of b. Note that every optimal solution of (we write it
this time in the matrix form)

min yb′ + yg · g − yf · f (7)
yQ′ + yg − yf = c (8)
(y, yg, yf ) ≥ 0 (9)
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gives an optimal solution of (4)-(6) by extending y with 0 coordinates at the rows which are in Q but not in Q′.
Assume first that the support Fy′ of y′ (the set of those elements of F where y′ is positive) is cross-free.

Then by Corollary 3.6, Q′ is TU and hence the matrix of the system (7)-(9) as well. Theorem 2.5 guarantees the
existence of an optimal integral solution of (7)-(9). By extending it with zeroes we obtain an optimal integral
solution (y∗, y∗g , y

∗
f ) of (4)-(6).

If Fy′ is not cross-free then we use the following uncrossing process. We take crossing sets Z, S ∈ Fy′ and we
decrease the values y′(Z), y′(S) by ε := min{y′(Z), y′(S)} and we increase the values y′(Z ∪ Y ) and y′(Z ∩ Y )
by ε. We claim that the new y′′ that we obtained together with the unchanged y′g, y′f is still an optimal solution
of the dual. Indeed, because of the crossing submodularity of b we do not increase the quantity at (7) and it is
easy to check that (8) and (9) remain true. To show that after finitely many iteration the support of the new
rational optimal solution is cross-free, we need the following Lemma.

3.8 Lemma. Let a1 . . . , an ∈ Q+. Consider the following operation. Take 1 ≤ i < j < k < l ≤ n where
min{aj , ak} = ε > 0 (if it is possible). Then decrease aj , ak by ε and increase ai, al by ε. Iterate this operation
with the modified ai. We claim that the process stops after finitely many steps.

Proof. By multiplying every ai with the same integer, we can assume that ai ∈ Z. We use induction on n. For
n < 4, one cannot apply the operation at all. Suppose that we know for some k that the process terminates
with any initial k-tuple. Let n = k + 1 and consider a1. It can only increase during the iteration but

∑k+1
i=1 ai

remains constant thus after at most
∑k+1
i=2 ai increases a1 changes no more. In the remaining part of the process

we have only k members thus it is finite.

Let F = {Z1, . . . , Zn} where Zi ⊆ Zj for i ≤ j and let ai := y′(Zi). Lemma 3.8 ensures that the uncrossing
process terminates after finitely many steps.

3.9 Corollary. If in Theorem 3.7 we have a lower bound p : 2V → Z ∪ {−∞} which is crossing supermodular
(instead of the upper bound b), then the system

p ≤ Qx
f ≤ x ≤ g

is TDI if it is solvable.

Proof. Consider Theorem 3.7 and take −p as b and reverse the edges in the digraph. Then in the primal we
have (−Q)x ≤ −p i.e., Qx ≥ p.

3.10 Remark. If there is no lower or upper bounds for some x(e) at Theorem 3.7, then it is still TDI. (The proof
is essentially the same, just the notation is more complicated). It means we can allow f : A→ Z ∪ {−∞} and
g : A→ Z ∪ {+∞} at Theorem 3.7.

3.11 Theorem. Consider the polyhedron at Theorem 3.7. It is nonempty if and only if %f (Z)− δg(Z) ≤ b(Z)
for every Z ⊆ V .

Applications of subflows
3.12 Theorem (Nash-Williams). A graph G = (V,E) has a k-edge-connected orientation if and only if G is
2k-edge-connected.

Proof. To prove the nontrivial direction, fix first and arbitrary orientation D of G. We are looking for an
x∗ ∈ {0, 1}A such that by reversing the edges {e ∈ A : x∗(e) = 1} in D we obtain a k-edge-connected
orientation. Consider the system

0 ≤ x ≤ 1

%D(Z)− %x(Z) + δx(Z) ≥ k (∅ ( Z ( V ).

If it has an integral solution then that is appropriate choice for x∗. We have at least a fractional solution namely
x ≡ 1

2 . Transform the second inequality to the form %x(Z)− δx(Z) ≤ %D(Z)− k. Let

b(Z) :=

{
%D(Z)− k if ∅ ( Z ( V

0 if Z ∈ {∅, V }.

It is routine to check that %D is submodular and hence %D(Z)−k as well. It implies that b is crossing submodular.
By Theorem 3.7, the system is TDI hence the desired integral solution exists by Theorem 3.3.
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Let D = (V,A) be a digraph. A nonempty F ⊆ A is called a directed cut (shortly dicut) if there is a
bipartition (S, T ) of V such that every edge between S and T points towards T and F consists of exactly these
edges. A dijoin of D is a J ⊆ A that meets all the dicuts.

3.13 Theorem (Lucchesi-Younger). In any digraph D = (V,A), the minimal size of a dijoin equals to the
maximal number of disjoint dicuts.

Proof. We can assume that D is weakly connected. Let p : 2V → Z ∪ {−∞} such that

p(Z) =

{
1 if δD(Z) = 0 where Z 6= ∅, V
−∞ otherwise.

Furthermore, let f ≡ 0, g ≡ +∞ and c ≡ 1 on A. It is routine to check that p is crossing supermodular. The
subflow polyhedron defined by D, f, g, p is nonempty since x ≡ 1 is in it. Consider the following primal and
dual programs.

min 1x

x ≥ 0

Qx ≥ 1

max y1

y ≥ 0

yQ ≤ 1

It is TDI by Corollary 3.9. It follows from Theorem 3.3 that there is an integral optimal primal x∗ and integral
optimal dual solution y∗. It means that x∗ is the characteristic function of a dijoin and {inD(Z) : y∗(Z) = 1}
is a family of disjoint dicuts. By Strong Duality 1.25, 1x∗ = y∗1 thus the dijoin and the dicut family we have
just found are of the same size.

3.14 Theorem. Let b∗, p∗ : 2V → Z where b∗ is submodular, p∗ is supermodular and p∗ ≤ b∗. Then there is a
modular m : 2V → Z such that p∗ ≤ m ≤ b∗.

Proof. By subtracting the same constant function from b∗ and p∗, we may assume that p∗(∅) = 0. We can
assume that b∗(∅) = 0 as well since changing this value to zero does not ruin submodularity. Take two disjoint
copies V ′ and V ′′ of V . For every v ∈ V let v′v′′ be an edge with f(v′v′′) := −∞ and g(v′v′′) := +∞. Finally
b(Z) := b∗(Z ∩ (V ′ ∪ V ′′))− p∗(Z ∩ (V ′ ∪ V ′′)).

It is not too hard to check that b is submodular and the condition in Theorem 3.11 hold. Hence there
is a subflow x∗ which we can assume is integral by Theorem 3.7. Then m(Z) :=

∑
v∈Z x

∗(v′v′′) satisfies the
conditions.
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